Supporting Clustering with Contrastive Learning

Advisor: Jia-Ling, Koh Speaker: Zi-Xin Chen Source: NAACL'22 Date: 2023/04/25

Outline

- Introduction
- Method
- Experiment
- Conclusion

Deep clustering

By optimizing a clustering objective function to learn better data representation for clustering.

Problem

Even with deep neural networks, data still has significant **overlap** across categories before clustering starts.

Contrastive learning

▲ Contrastive learning for image

▲ Contrastive learning for text

Supporting Clustering with Contrastive Learning (SCCL)

Use contrastive learning to promote better separation in clustering.

Outline

- Introduction
- Method
- Experiment
- Conclusion

SCCL

Feature Generator - Sentence-BERT

- Use siamese networks
- Use pre-trained BERT networks and only fine-tune it to yield useful sentence embeddings -1...1

Example fine-tune dataset - SNLI:

a collection of 570,000 sentence pairs annotated with the labels *contradiction*, *eintailment*, and *neutral*.

Deep Clustering

Soft clustering

Deep Clustering

Clustering head (f)

$$e_{j} = \psi(x_{j})$$

$$q_{jk} = \frac{\left(1 + \|e_{j} - \mu_{k}\|_{2}^{2} / \alpha\right)^{-\frac{\alpha+1}{2}}}{\sum_{k'=1}^{K} \left(1 + \|e_{j} - \mu_{k'}\|_{2}^{2} / \alpha\right)^{-\frac{\alpha+1}{2}}}$$

The probability of data **j** assign to cluster **k** (soft clustering)

Deep Clustering

Clustering head (f)

 $p_{jk} = \frac{q_{jk}^2 / f_k}{\sum_{k'} q_{jk}^2 / f_{k'}}$

Target distribution

$$f_k = \sum_{j=1}^M q_{jk}, k = 1, \dots, K$$

Cluster frequency

Instance-wise Contrastive Learning

Randomly sampled minibatch:
$$\mathcal{B} = \{x_i\}_{i=1}^M$$

Pairs of augmentations for each data instance in **B**: $\mathcal{B}^a = {\tilde{x}_i}_{i=1}^{2M}$

Positive pairs:
$$\tilde{x}_{i^1}, \tilde{x}_{i^2} \in \mathcal{B}^a$$

Negative pairs: other 2M-2 examples in **B**^a

Instance-wise Contrastive Learning

$$\tilde{z}_{j} = g(\psi(\tilde{x}_{j})), j = i^{1}, i^{2}$$

$$\ell_{i^{1}}^{I} = -\log \frac{\exp(\sin(\tilde{z}_{i^{1}}, \tilde{z}_{i^{2}})/\tau)}{\sum_{j=1}^{2M} \mathbb{1}_{j \neq i^{1}} \cdot \exp(\sin(\tilde{z}_{i^{1}}, \tilde{z}_{j})/\tau)}$$

$$2M$$

$$\mathcal{L}_{\text{Instance-CL}} = \sum_{i=1}^{2m} \ell_i^I / 2M$$

Objective Function

$$\mathcal{L} = \mathcal{L}_{\text{Instance-CL}} + \eta \mathcal{L}_{\text{Cluster}}$$
$$= \sum_{j=1}^{M} \ell_j^C / M + \eta \sum_{i=1}^{2M} \ell_i^I / 2M$$

Outline

- Introduction
- Method
- Experiment
 - Conclusion

Dataset

Dataset	V	Documents		Clusters	
		N^D	Len	N^C	L/S
AgNews	21K	8000	23	4	1
StackOverflow	15K	20000	8	20	1
Biomedical	19K	20000	13	20	1
SearchSnippets	31K	12340	18	8	7
GooglenewsTS	20K	11109	28	152	143
GooglenewsS	18K	11109	22	152	143
GooglenewsT	8K	11109	6	152	143
Tweet	5K	2472	8	89	249

Evaluation Metric

• Accuracy for clustering

Permutes clustering labels to match the ground truth labels

$$ACC = \max_{m} \frac{\sum_{i=1}^{n} \mathbf{1}\{l_i = m(c_i)\}}{n}$$

• NMI Entropy before clustering Entropy after clustering I(C,T) = H(T) - H(T|C)

$$NMI = \frac{I(C,T)}{\sqrt{H(T) \cdot H(C)}}$$

Comparison

	AgNews		SearchSnippets		StackOverflow		Biomedical	
	ACC	NMI	ACC	NMI	ACC	NMI	ACC	NMI
BoW	27.6	2.6	24.3	9.3	18.5	14.0	14.3	9.2
TF-IDF	34.5	11.9	31.5	19.2	58.4	58.7	28.3	23.2
STCC	-	-	77.0	63.2	51.1	49.0	43.6	38.1
Self-Train	-	-	77.1	56.7	59.8	54.8	54.8	47.1
HAC-SD	81.8	54.6	82.7	63.8	64.8	59.5	40.1	33.5
SCCL	88.2	68.2	85.2	71.1	75.5	74.5	46.2	41.5

Comparison

	Carala	Name TC	C	NI.	Caral	N C	T	
	GoogleNews-15		Googleinews-1		Googlenews-5		Iweet	
	ACC	NMI	ACC	NMI	ACC	NMI	ACC	NMI
BoW	57.5	81.9	49.8	73.2	49.0	73.5	49.7	73.6
TF-IDF	68.0	88.9	58.9	79.3	61.9	83.0	57.0	80.7
STCC	-	-	-	-	-	-	-	-
Self-Train	-	-	-	-	-	-	-	-
HAC-SD	85.8	88.0	81.8	84.2	80.6	83.5	89.6	85.2
SCCL	89.8	94.9	75.8	88.3	83.1	90.4	78.2	89.2

Ablation Study

Intra-cluster and Inter-cluster Distance

Text Data Augmentations

WNet	Replace text with WordNet synonyms
Ctxt	Use transformer to find top-n words for substitution
Para	Translate text to another language then translate back to English

Dataset	Accuracy			NMI			
Dutuset	WNet	Para	Ctxt	WNet	Para	Ctxt	
AgNews	86.6	86.5	88.2	66.0	65.2	68.2	
SearchSnippets	78.1	83.7	85.0	61.9	68.1	71.0	
StackOverflow	69.1	73.3	75.5	69.9	72.7	74.5	
Biomedical	42.8	43.0	46.2	38.0	39.5	41.5	
GooglenewsTS	82.1	83.5	89.8	92.1	92.9	94.9	
GooglenewsS	73.0	75.3	83.1	86.4	87.4	90.4	
GooglenewsT	66.3	67.5	73.9	83.4	83.6	87.5	
Tweet	70.6	73.7	78.2	86.2	86.4	89.2	

Composition of Data Augmentations

2nd Augmentation: Contextual + CharSwap

30%

Composition of Data Augmentations

Similarity between original text and augmented text (2nd)

Outline

- Introduction
- Method
- Experiment
- Conclusion

Conclusion

- SCCL outperforms or performs highly comparably to the state-of-the-art methods.
- SCLL is capable of generating high-quality clusters by integrating the deep clustering and contrastive learning.